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Abstract. It is shown that the series derived by Mizrahi, giving the Husimi transform (or covariant
symbol) of an operator product, is absolutely convergent for a large class of operators. In
particular, the generalized Liouville equation, describing the time evolution of the Husimi function,
is absolutely convergent for a large class of Hamiltonians. In contrast, the series derived by
Groenewold, giving the Weyl transform of an operator product, is often only asymptotic, or even
undefined. The result is used to derive an alternative way of expressing expectation values in terms
of the Husimi function. The advantage of this formula is that it applies in many of the cases where
the anti-Husimi transform (or contravariant symbol) is so highly singular that it fails to exist as a
tempered distribution.

1. Introduction

A particularly useful and illuminating way of studying the classical limit is to formulate
quantum mechanics in terms of phase space distributions [1–3]. The advantage of such a
formulation as compared with the standard Hilbert space formulation is that it puts quantum
mechanics into a form which is similar to the probabilistic phase space formulation of classical
mechanics. At least from a formal, mathematical point of view it thus allows one to regard
quantum mechanics as a kind of generalized version of classical mechanics.

There are, of course, many different phase space formulations of quantum mechanics.
The one which was discovered first is the formulation based on the Wigner function [1–4]. In
the case of a system having one degree of freedom with position x̂, momentum p̂ and density
matrix ρ̂ the Wigner function is defined by

W(x, p) = 1

2π

∫
dy eipy

〈
x − 1

2y
∣∣ ρ̂ ∣∣x + 1

2y
〉

(in units chosen such that h̄ = 1). The Wigner function continues to find many important
applications (in quantum tomography [3], for example). However, if the aim is specifically to
represent quantum mechanics in a manner which resembles classical mechanics as closely as
possible, then the Wigner function suffers from the serious disadvantage that it is not strictly
non-negative (except in special cases [5]), which makes the analogy with the classical phase
space probability distribution somewhat strained.

There has accordingly been some interest in the problem of constructing alternative
distributions, which are strictly non-negative, and which can be interpreted as probability
density functions. There are, in fact, infinitely many such functions [6–11]. The one which
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was discovered first, and which is the focus of this paper, is the Husimi, orQ-function [1–3, 12–
15], which is obtained from the Wigner function by smearing it with a Gaussian convolution:

Q(x, p) = 1

π

∫
dx ′ dp′ exp

[−(x − x ′)2 − (p − p′)2]W(x ′, p′)
(in units such that h̄ = 1, and where we assume that x and p have been made dimensionless
by choosing a suitable length scale λ, and making the replacements x → x/λ, p → λp).
It should be emphasized that it is not simply that the Husimi function has the mathematical
significance of a probability density function. It also has this significance physically. It has been
shown that the Husimi function is the probability distribution describing the outcome of a joint
measurement of position and momentum in a number of particular cases [3, 8, 16–18]. More
generally it can be shown [19, 20] that the Husimi function has a universal significance: namely,
it is the probability density function describing the outcome of any retrodictively optimal joint
measurement process. In Appleby [20] it is argued that this means that the Husimi function
may be regarded as the canonical quantum mechanical phase space probability distribution,
which plays the same role in relation to joint measurements of x and p as does the function
|〈x | ψ〉|2 in relation to single measurements of x only.

If one wants to construct a systematic procedure for investigating the transition from
quantal to classical it is not enough simply to find an analogue for the classical phase space
probability distribution. One also needs an analogue of the classical Liouville equation, giving
the time evolution of the probability distribution. In the formulation based on the Husimi
function this is accomplished by means of Mizrahi’s formula [15], giving the Husimi transform
of an operator product (also see Lee [2], Cohen [21], Prugovečki [22] and O’Connell and
Wigner [23]).

Let AW denote the Weyl transform of the operator Â, defined by [1, 2, 24]

AW(x, p) =
∫

dy eipy
〈
x − 1

2y
∣∣ Â ∣∣x + 1

2y
〉
.

The Husimi transform (or covariant symbol) AH is then given by

AH(x, p) =
1

π

∫
dx ′ dp′ exp

[−(x − x ′)2 − (p − p′)2]AW(x
′, p′). (1)

Mizrahi [15] has derived the following formula for the Husimi transform of the product of two
operators Â, B̂:

(ÂB̂)H = AHe
←
∂+
→
∂−BH (2)

where ∂± = 2−1/2(∂x ∓ i∂p). Using this formula, and the fact that the Husimi function is just
the Husimi transform of the density matrix scaled by a factor of 1/(2π), it is straightforward
to derive the following generalization of the Liouville equation:

∂

∂t
Q = {HH,Q

}
H (3)

whereHH is the Husimi transform of the Hamiltonian, and
{
HH,Q

}
H is the generalized Poisson

bracket

{
HH,Q

}
H =

∞∑
n=0

2

n!
Im
(
∂n+HH ∂

n
−Q

)
. (4)

The first term in the sum on the right-hand side is just the ordinary Poisson bracket. The
remaining terms represent quantum mechanical corrections.
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It is not apparent from Mizrahi’s derivation, whether these expressions are exact, or
whether they are only asymptotic. In section 2 we will show that there is a large class of
operators for which the series in equation (2) (and consequently the series in equation (4)) is
absolutely convergent. This property is closely connected with the complex analytic properties
of the Husimi transform, as discussed by Mehta and Sudarshan [25] and Appleby [26].

The significance of the result proved in section 2 is best appreciated if one compares
equations (2)–(4) with the corresponding formulae in the Wigner–Weyl formalism [1, 2, 27–
29]:

(ÂB̂)W = AW exp
[

1
2 i
(←−
∂x
−→
∂p −←−∂p−→∂x

)]
BW (5)

∂

∂t
W = {HW,W }W (6)

{HW,W }W =
∞∑
n=0

(−1)n

(2n + 1)!22n
HW

(←−
∂x
−→
∂p −←−∂p−→∂x

)2n+1
W (7)

whereHW is the Weyl transform of the Hamiltonian, and where {HW,W }W denotes the Moyal
bracket [28].

It can be seen that equations (2)–(4) and equations (5)–(7) are formally very similar.
However, this formal resemblance is somewhat deceptive, as it turns out that the two sets of
equations have quite different convergence properties.

The formula for the Weyl transform of an operator product, equation (5), is exact if either
Â or B̂ is a polynomial in x̂ and p̂ (in which case the series terminates after a finite number
of terms). More generally, if AW, BW are C∞ functions satisfying appropriate conditions
on their growth at infinity, then it can be shown that the series is asymptotic [30]. However,
there are many operators of physical interest for which the Weyl transform is only defined
in a distributional sense, and for operators such as this the series can be highly singular.
Consider, for example, the parity operator V̂ , whose action in the x-representation is given
by 〈

x
∣∣ V̂ ∣∣ψ 〉 = 〈−x | ψ〉.

We have

VW(x, p) = πδ(x)δ(p).
Substituting this expression into equations (5) gives

(V̂ 2)W(x, p) = π2δ(x)δ(p) exp
[

1
2 i
(←−
∂x
−→
∂p −←−∂p−→∂x

)]
δ(x)δ(p).

The left-hand side of this equation is equal to 1, whereas the expression on the right-hand side
is an infinite sum, each individual term of which is ill-defined (being a product of distributions
concentrated at the origin).

Mizrahi’s [15] derivation of the formula for the Husimi transform of an operator product,
equation (2), depends on the same kind of formal manipulation that is used in Groenewold’s
[27] derivation of equation (5), and so it might be supposed that the validity of the formula
is similarly restricted. However, it turns out that the sum in equation (2) is actually much
better behaved. In fact, it will be shown in section 2 that, subject to certain not very restrictive
conditions on the operators Â and B̂, the sum on the right-hand side of equation (2) is not only
defined and asymptotic; it is even absolutely convergent for all x and p. This is essentially
because AH is typically a much less singular object than AW (due to the Gaussian convolution
in equation (1)).
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In section 3 we apply the result just described to the problem of expressing expectation
values in terms of the Husimi function.

The expectation value of an operator Â can be obtained from the Wigner function using
the formula [1, 2]

Tr(ρ̂Â) =
∫

dx dpAW(x, p)W(x, p). (8)

In certain cases we can also express the expectation value in terms of the Husimi function
using [1, 2, 15]

Tr(ρ̂Â) =
∫

dx dpAH(x, p)Q(x, p) (9)

where AH is the anti-Husimi transform (or contravariant symbol) of Â, defined by

AH = e−∂+∂−AH (10)

(with ∂± = 2−1/2(∂x ∓ i∂p), as before). Equation (9) is valid (for example) whenever [31] AH
exists as a tempered distribution and Q belongs to the corresponding space of test functions
(i.e. the C∞ functions of rapid decrease). However, we have the problem that AH is often so
highly singular that it is not defined as a tempered distribution, which means that the usefulness
of equation (9) is somewhat limited. This is often seen as a serious drawback of the Husimi
formalism.

However, it turns out that it is often possible to circumvent this difficulty. Suppose we
substitute the series given by equation (10) into the right-hand side of equation (9), and suppose
we then reverse the order of the sum and integral. This gives

Tr(ρ̂Â) =
∞∑
n=0

(−1)n

n!

∫
dx dp

(
∂n+∂

n
−AH(x, p)

)
Q(x, p). (11)

In section 3 we show that it often happens that the sum on the right-hand side of this equation
is absolutely convergent, even in many of the cases where AH fails to exist as a tempered
distribution.

2. Convergence of the product formula

We will find it convenient to work in terms of coherent states. Define

â = 1√
2
(x̂ + ip̂) â† = 1√

2
(x̂ − ip̂)

and let φn denote the nth (normalized) eigenstate of the number operator â†â:

â φ0 = 0 φn = 1√
n!
(â†)nφ0.

Let D̂xp be the displacement operator

D̂xp = ei(px̂−xp̂)

and define

φn;xp = D̂xpφn φxp = φ0;xp.
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The φxp are the coherent states. Let Â be any operator (not necessarily bounded) with domain
of definition DÂ, and suppose that φxp ∈ DÂ for all x, p. It is then straightforward to show
that

AH(x, p) = 〈φxp, Âφxp〉

(we no longer use the Dirac bra–ket notation, because the existence of 〈ψ, Âχ〉 does not, in
general, imply the existence of 〈Â†ψ, χ〉).

If Â, B̂ are both bounded then the proof of equation (2) is comparatively straightforward.
However, we want to make the proof as general as possible. We then have the difficulty that
the sum in equation (2) will only be defined if AH and BH are both C∞; whereas functions
of the form 〈D̂xpψ, ÂD̂xpψ〉 are, in general, not even once-differentiable, let alone C∞. We
are thus faced with the question: what conditions must we impose on the operator Â in order
to ensure that the function AH is C∞? One answer to this question is given by the following
theorem.

Theorem 1. Let DÂ, DÂ† be the domains of definition of Â, Â†, respectively. Suppose that
φxp ∈ DÂ ∩ DÂ† for all x, p. Suppose, also, that 〈φx1p1 , Âφx2p2〉, 〈φ1;x1p1 , Âφx2p2〉 and
〈φ1;x1p1 , Â

†φx2p2〉 are continuous functions on R
4. Then AH is an analytic function, which

uniquely continues to a holomorphic function defined on the whole of C
2.

The continuation is given by

AH(x, p) =
〈φx−p− , Âφx+p+〉
〈φx−p− , φx+p+〉

(12)

where x, p are arbitrary complex, and where x±, p± are the real variables defined by

x± = 1
2 (x + x∗)± 1

2 i(p − p∗) (13)

p± = 1
2 (p + p∗)∓ 1

2 i(x − x∗). (14)

This theorem is a strengthened version of results proved by Mehta and Sudarshan [25]
and Appleby [26]. The proof is given in appendix A.

It is worth noting that the condition in the statement of this theorem is quite weak. If the
three functions listed exist and are continuous then, without making any explicit assumption
regarding the differentiability of these functions, it automatically follows that AH must be
complex analytic.

We also have the following lemma.

Lemma 2. Suppose that Â satisfies the conditions of theorem 1. Then

〈φn;x−p− , Âφx+p+〉
〈φx−p− , φx+p+〉

= 1√
n!

n∑
r=0

(
n

r

)
(z+ − z∗−)n−r

∂r

∂zr−
AH(x, p) (15)

〈Â†φx−p− , φn;x+p+〉
〈φx−p− , φx+p+〉

= 1√
n!

n∑
r=0

(
n

r

)
(z− − z∗+)n−r

∂r

∂zr+
AH(x, p) (16)

where x±, p± are the variables defined by equations (13) and (14), and where

z± = 1√
2
(x ± ip).
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The proof of this lemma is given in appendix B.
If x, p are both real (so that z− = z∗+) equations (15) and (16) become

〈φn;xp, Âφxp〉 = 1√
n!
∂n−AH(x, p) (17)

〈Â†φxp, φn;xp〉 = 1√
n!
∂n+AH(x, p) (18)

where

∂± = ∂

∂z±
= 1√

2

(
∂

∂x
∓ i

∂

∂p

)
.

Using these results the proof of the product formula becomes very straightforward. Let Â,
B̂ be any pair of operators satisfying the conditions of theorem 1. Suppose also that φxp ∈ DÂB̂

for all x, p ∈ R. Then, for real x, p,

(ÂB̂)H(x, p) = 〈φxp, ÂB̂φxp〉 = 〈Â†φxp, B̂φxp〉

=
∞∑
n=0

〈Â†φxp, φn;xp〉〈φn;xp, B̂φxp〉 (19)

where we have used the fact that the φn;xp constitute an orthonormal basis. The absolute
convergence of this sum is an immediate consequence of basic Hilbert space theory. Using
equations (17) and (18) we deduce

(ÂB̂)H(x, p) =
∞∑
n=0

1

n!
∂n+AH(x, p)∂

n
−BH(x, p) = AH(x, p) e

←
∂+
→
∂−BH(x, p)

which is the product formula. The absolute convergence of this sum follows from the absolute
convergence of the sum in equation (19).

3. Expectation values

We now discuss the implications that the result just proved has for the convergence of
equation (11), giving the expectation value of Â in terms of the Husimi function.

Of course, one does not expect the right-hand side of equation (11) to converge for arbitrary
Â and ρ̂, since, apart from anything else, an unbounded operator does not have a well defined
expectation value for every state ρ̂. We therefore need to place some kind of restriction on
the class of operators Â and density matrices ρ̂ considered. The result we prove is probably
not the most general possible. However, it will serve to illustrate the point, that the sum on
the right-hand side of equation (11) is often absolutely convergent, even in many of the cases
where the anti-Husimi transform fails to exist as a tempered distribution.

We accordingly confine ourselves to the case of density matrices for which the Husimi
functionQ ∈ I (R2), where I (R2) is the space ofC∞ functions which are rapidly decreasing
at infinity [31] (i.e. the space of test functions for the space of tempered distributions). In other
words, we assume that

sup
(x,p)∈R2

∣∣(1 + x2 + p2)l∂mx ∂
n
pQ(x, p)

∣∣ <∞
for every triplet of non-negative integers l, m, n.

We assume that Â has the properties
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(a) φxp ∈ DÂ ∩DÂ† for all x, p ∈ R.
(b) There exist positive constants K± and non-negative integers N± such that

‖Âφxp‖ � K−(1 + x2 + p2)N− (20)

‖Â†φxp‖ � K+(1 + x2 + p2)N+ (21)

for all x, p ∈ R.

We will say that an operator satisfying these two conditions is polynomially bounded. The
following lemma gives two properties of such operators which will be needed in the following.

Lemma 3. Suppose that Â is polynomially bounded. Then

(a) Â satisfies the conditions of theorem 1. In particular, AH is analytic.
(b) For every pair of non-negative integers m, n there exists a positive constant Kmn and a

non-negative integer Nmn such that∣∣∂mx ∂npAH(x, p)
∣∣ � Kmn(1 + x2 + p2)Nmn (22)

for all x, p ∈ R.

The proof is given in appendix C.
We are now ready to prove the main result of this section.

Theorem 4. Suppose that Â is polynomially bounded, and suppose that the density matrix ρ̂
is such that the corresponding Husimi function is rapidly decreasing at infinity. Suppose, also,
that Âρ̂ is of trace-class. Then

Tr(Âρ̂) =
∞∑
n=0

(−1)n

n!

∫
dx dp

(
∂n+∂

n
−AH(x, p)

)
Q(x, p) (23)

where the sum on the right-hand side is absolutely convergent.

Proof. We have

Tr(Âρ̂) = 1

2π

∫
dx dp 〈φxp, Âρ̂φxp〉

= 1

2π

∫
dx dp

( ∞∑
n=0

〈Â†φxp, φn;xp〉〈φn;xp, ρ̂φxp〉
)
.

We now use Lebesgue’s dominated convergence theorem [31] to show that we may reverse the
order of sum and integral. In fact, it follows from the Schwartz inequality that∣∣∣∣∣
m∑
n=0

〈Â†φxp, φn;xp〉〈φn;xp, ρ̂φxp〉
∣∣∣∣∣ �

(( m∑
n=0

∣∣〈Â†φxp, φn;xp〉
∣∣2)( m∑

n=0

∣∣〈φn;xp, ρ̂φxp〉∣∣2
)) 1

2

� ‖Â†φxp‖‖ρ̂φxp‖.
We have

‖ρ̂φxp‖ =
(〈φxp, ρ̂2φxp〉

) 1
2 �

(〈φxp, ρ̂φxp〉) 1
2 =

√
2πQ(x, p)

which, together with the inequality (21), implies

‖Â†φxp‖‖ρ̂φxp‖ �
√

2πK+(1 + x2 + p2)N+
√
Q(x, p).
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By assumption, Q(x, p) ∈ I (R2). It follows that ‖Â†φxp‖‖ρ̂φxp‖ is integrable. We may
therefore use Lebesgue’s dominated convergence theorem [31] to deduce

Tr(Âρ̂) = 1

2π

∞∑
n=0

∫
dx dp 〈Â†φxp, φn;xp〉〈φn;xp, ρ̂φxp〉 (24)

where the sum is absolutely convergent, since

∞∑
n=0

∣∣∣∣
∫

dx dp 〈Â†φxp, φn;xp〉〈φn;xp, ρ̂φxp〉
∣∣∣∣ �

∫
dx dp ‖Â†φxp‖‖ρ̂φxp‖ <∞.

We know from lemma 3 that Â satisfies the conditions of theorem 1. We may therefore use
the results proved in the last section to rewrite equation (24) in the form

Tr(Âρ̂) =
∞∑
n=0

1

n!

∫
dx dp ∂n+AH(x, p)∂

n
−Q(x, p).

Finally, it follows from the inequality (22), together with the fact that Q ∈ I (R2), that we
may partially integrate term-by-term to obtain

Tr(Âρ̂) =
∞∑
n=0

(−1)n

n!

∫
dx dp

(
∂n+∂

n
−AH(x, p)

)
Q(x, p). �

The right-hand side of equation (8) (expressing 〈Â〉 in terms of the Wigner function) is
defined whenever W ∈ I (R2) and AW exists as a tempered distribution. On the other hand,
although it is true that Q ∈ I (R2) whenever W ∈ I (R2) (see theorem IX.3 of [31]), the
fact that AW exists as a tempered distribution is not evidently sufficient to ensure that Â is
polynomially bounded. So we have not shown that equation (23) has the same range of validity
as equation (8). However, it can be shown that Â is polynomially bounded if φxp ∈ DÂ ∩DÂ† ,
and if (Â†Â)W and (ÂÂ†)W exist as tempered distributions (see theorem IX.4 of [31]). In
applications one meets operators satisfying these conditions much more commonly than one
meets operators for which AH exists as a tempered distribution. For instance, every bounded
operator is polynomially bounded, whereas there are many bounded operators of physical
interest for which AH fails to exist as a tempered distribution. The above result consequently
represents a significant improvement on the results that were previously known.

Of course, just from the fact that equation (23) is convergent, it does not necessarily follow
that the convergence is sufficiently rapid to make the formula useful in practical, numerical
work. This question requires further investigation.

4. Conclusion

As has been stressed by Mizrahi [15], Lalović et al [9], Davidović and Lalović [33] and others,
the Husimi formalism provides an especially perspicuous method for studying the relationship
between quantum and classical mechanics. It establishes a one-to-one correspondence between
the basic equations of the two theories, so that one can start with a classical formula,
and then turn it into the corresponding quantum formula by adding successive correction
terms. Moreover, the fact that Q(x, p) describes the outcome of a retrodictively optimal
joint measurement of x and p [19, 20], means that one could reasonably argue that the
Husimi function is the most natural choice for a quantum mechanical analogue of the classical
probability distribution.
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In this paper we have investigated the convergence properties of two of the key formulae
in the Husimi formalism. We have shown that the formula giving the Husimi transform of
an operator product has much better convergence properties than the corresponding formula
in the Wigner function formalism. In particular, the Husimi formalism leads to a convergent
generalization of the Liouville equation for a very large class of Hamiltonians. We have also
shown that the convergence properties of the formula expressing the expectation value 〈Â〉 in
terms of the Husimi function, although seemingly not as good as those of the corresponding
formula in the Wigner function formalism, are significantly better than the often highly singular
character of AH would suggest.

These results lend additional support to the suggestion that, in so far as the aim is
specifically to formulate quantum mechanics as a kind of generalized version of classical
mechanics, then the formalism based on the Husimi function has some significant advantages.

Appendix A. Proof of theorem 1

For arbitrary complex x, p define

F(x, p) = 〈φx−p− , Â φx+p+〉
〈φx−p− , φx+p+〉

where x±, p± are the (real) variables defined by equations (13) and (14).
It is easily seen that, if x, p are both real, then

F(x, p) = 〈φxp, Â φxp〉 = AH(x, p).

The problem thus reduces to that of showing that, if Â has the properties stipulated, then F
is holomorphic. We will do this by showing that F satisfies the Cauchy–Riemann equations
with respect to the complex variables

z± = 1√
2
(x± ± ip±) = 1√

2
(x ± ip). (A1)

In fact, it is straightforward to show that φxp, regarded as a vector-valued function of two
real variables, is differentiable in the norm topology; the derivatives being given by

∂

∂x
φxp = 1√

2
φ1; xp − i

2
pφxp

∂

∂p
φxp = i√

2
φ1; xp +

i

2
xφxp.

Also,

〈φx−p− , φx+p+〉 = exp
[− 1

4 (x+ − x−)2 − 1
4 (p+ − p−)2 + 1

2 i(p+x− − p−x+)
]
.

Consequently, F is differentiable with respect to the variables x−, p−. Moreover,

∂

∂x−
F(x, p) = 1√

2

〈φ1; x−p− , Âφx+p+〉
〈φx−p− , φx+p+〉

+
1√
2
(z∗− − z+)F (x, p)

= i
∂

∂p−
F(x, p) (A2)

from which it follows that F satisfies the Cauchy–Riemann equations with respect to the
complex variable z− = (x− − ip−)/

√
2.
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We can alternatively write

F(x, p) = 〈Â
† φx−p− , φx+p+〉
〈φx−p− , φx+p+〉

.

Consequently, F is also differentiable with respect to the real variables x+, p+. Moreover,

∂

∂x+
F(x, p) = 1√

2

〈Â† φx−p− , φ1; x+p+〉
〈φx−p− , φx+p+〉

+
1√
2
(z∗+ − z−)F (x, p)

= −i
∂

∂p+
F(x, p) (A3)

from which it follows that F satisfies the Cauchy–Riemann equations with respect to the
complex variable z+ = (x+ + ip+)/

√
2.

If Â has the properties specified in the statement of theorem, then we see from
equations (A2) and (A3) that the partial derivatives ∂F/∂x±, ∂F/∂p±, are continuous functions
on R

4. It follows [32] that F is a holomorphic function of the complex variables z±. Referring
to equation (A1) it can be seen that the variables z± are linear combinations of x, p. We
conclude that F is a holomorphic function of x, p.

Appendix B. Proof of lemma 2

It is straightforward to show that φn;x−p− , regarded as a vector-valued function of two real
variables, is differentiable in the norm topology. Moreover,

1√
2

(
∂

∂x−
− i

∂

∂p−

)
φn;x−p− =

√
n + 1φ(n+1);x−p− + 1

2z− φn;x−p− .

Hence

1√
2

(
∂

∂x−
+ i

∂

∂p−

) 〈φn;x−p− , Âφx+p+〉
〈φx−p− , φx+p+〉

=
√
n + 1
〈φ(n+1);x−p− , Âφx+p+〉
〈φx−p− , φx+p+〉

+
(
z∗− − z+

) 〈φn;x−p− , Âφx+p+〉
〈φx−p− , φx+p+〉

.

Iterating this result, and using

1

2r/2

(
∂

∂x−
+ i

∂

∂p−

)r
AH(x, p) =

∂r

∂zr−
AH(x, p)

we obtain equation (15).
The proof of equation (16) is similar.

Appendix C. Proof of lemma 3

Proof of (1). We need to show that, if Â is polynomially bounded, then the functions
〈φx1p1 , Âφx2p2〉, 〈φ1;x1p1 , Âφx2p2〉 and 〈φ1;x1p1 , Â

†φx2p2〉 are continuous.
Consider the function 〈φ1;x1p1 , Âφx2p2〉. We have∣∣〈φ1;x ′1p′1 , Âφx ′2p′2

〉− 〈φ1;x1p1 , Âφx2p2

〉∣∣
�
∣∣〈(φ1;x ′1p′1 − φ1;x1p1), Âφx ′2p

′
2

〉∣∣ +
∣∣〈φ1;x1p1 , Â(φx ′2p

′
2
− φx2p2)

〉∣∣.
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In view of equation (20) we have∣∣〈(φ1;x ′1p′1 − φ1;x1p1), Âφx ′2p
′
2

〉∣∣ � K−(1 + x ′22 + p′22 )
N−‖φ1;x ′1p′1 − φ1;x1p1‖.

Also, using the completeness relation for coherent states, together with equation (21), we find

∣∣〈φ1;x1p1 , Â(φx ′2p
′
2
− φx2p2)

〉∣∣ = ∣∣∣∣ 1

2π

∫
dx3 dp3

〈
φ1;x1p1 , φx3p3

〉〈
Â†φx3p3 , (φx ′2p

′
2
− φx2p2)

〉∣∣∣∣
� f (x1, p1)‖φx ′2p′2 − φx2p2‖

where f is the polynomial

f (x1, p1) = K+

2π

∫
dx3 dp3

∣∣〈φ1;x1p1 , φx3p3

〉∣∣(1 + x2
3 + p2

3)
N+

= K+

2
3
2π

∫
dx ′3 dp′3

√
1 + x ′23 + p′23

(
1 + (x ′3 + x1)

2 + (p′3 + p1)
2
)N+

× exp
[− 1

4

(
x ′23 + p′23

)]
.

Putting these results together we find∣∣〈φ1;x ′1p′1 , Âφx ′2p′2
〉− 〈φ1;x1p1 , Âφx2p2

〉∣∣
� K−(1 + x ′22 + p′22 )

N−‖φ1;x ′1p′1 − φ1;x1p1‖ + f (x1, p1)‖φx ′2p′2 − φx2p2‖
and φxp and φ1;xp, regarded as vector-valued functions on R

2, are continuous in the norm
topology. Consequently,〈

φ1;x ′1p′1 , Âφx ′2p′1
〉→ 〈

φ1;x1p1 , Âφx2p2

〉
as (x ′1, p

′
1, x
′
2, p

′
2) → (x1, p1, x2, p2). It follows that

〈
φ1;x1p1 , Âφx2p2

〉
is continuous.

Continuity of the functions
〈
φx1p1 , Âφx2p2

〉
and

〈
φ1;x1p1 , Â

†φx2p2

〉
is proved in the same way.

Proof of (2). The completeness relation for coherent states implies

AH(x, p) = 〈φxp, Âφxp〉 =
1

2π

∫
dx ′ dp′ 〈φxp, φx ′p′ 〉〈Â†φx ′p′ , φxp〉.

Using

∂+φn;xp =
√
n + 1φ(n+1);xp + 1

2z
∗φn;xp

∂−φn;xp =
{
− 1

2zφxp if n = 0

−√nφ(n−1);xp − 1
2zφn;xp if n > 0

(where ∂± = 2−1/2(∂x ∓ i∂p) and z = 2−1/2(x + ip))), and differentiating under the integral
sign, it is not difficult to show that

∂mx ∂
n
pAH(x, p) =

n+m∑
r,s=0

crs

∫
dx ′ dp′ 〈φr;xp, φx ′p′ 〉〈Â†φx ′p′ , φs;xp〉

for suitable constants crs . We have

∣∣〈φr;xp, φx ′p′ 〉∣∣ = 1

2r/2
√
r!

(
(x ′ − x)2 + (p′ − p)2)r/2 exp

[− 1
4 (x
′ − x)2 − 1

4 (p
′ − p)2].
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In view of the inequality (21) it follows that∣∣∣∣
∫

dx ′ dp′ 〈φr;xp, φx ′p′ 〉〈Â†φx ′p′ , φs;xp〉
∣∣∣∣ � K+

2r/2
√
r!

∫
dx ′′ dp′′

(
1 + (x ′′ + x)2 + (p′′ + p)2

)N+

×(x ′′2 + p′′2
)r/2

exp
[− 1

4

(
x ′′2 + p′′2

)]
.

It can be seen that the expression on the right-hand side of this inequality is a polynomial in x
and p. Consequently,∣∣∂mx ∂npAH(x, p)

∣∣ � f (x, p)

for some polynomial f (x, p). The claim is now immediate.
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